Fisher Scoring and a Mixture of Modes Approach for Approximate Inference and Learning in Nonlinear State Space Models
نویسندگان
چکیده
We present Monte-Carlo generalized EM equations for learning in nonlinear state space models. The difficulties lie in the Monte-Carlo E-step which consists of sampling from the posterior distribution of the hidden variables given the observations. The new idea presented in this paper is to generate samples from a Gaussian approximation to the true posterior from which it is easy to obtain independent samples. The parameters of the Gaussian approximation are either derived from the extended Kalman filter or the Fisher scoring algorithm. In case the posterior density is multimodal we propose to approximate the posterior by a sum of Gaussians (mixture of modes approach). We show that sampling from the approximate posterior densities obtained by the above algorithms leads to better models than using point estimates for the hidden states. In our experiment, the Fisher scoring algorithm obtained a better approximation of the posterior mode than the EKF. For a multimodal distribution, the mixture of modes approach gave superior results.
منابع مشابه
The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملLudwig Maximilians Universität München Dynamic Neural Regression Models
We consider sequential or online learning in dynamic neural regression models. By using a state space representation for the neural network’s parameter evolution in time we obtain approximations to the unknown posterior by either deriving posterior modes via the Fisher scoring algorithm or by deriving approximate posterior means with the importance sampling method. Furthermore, we replace the c...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملModeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کامل